

1

BigFix FillDB Performance:
The Canary in the Coal Mine

Authors: Mark Leitch, Aram Eblighatian @ HCL Technologies

Coal miners historically would bring canaries in cages down into the mines as a way to warn them of

danger. In the presence of methane or carbon dioxide, the canary would die at levels that would not be

lethal to the miners. In this way, the canaries would safeguard the health of the miners.

In a similar manner, FillDB is the single best indicator of the health of your BigFix Root Server. If FillDB is

healthy, the likelihood is extremely good that you have a robust and well performing BigFix Server. We

will describe a mechanism to provide deep understanding of FillDB performance, and thus a good

indication to the overall health of your BigFix Server.

Why is FillDB so important?

FillDB is the service that processes the incoming data from all of the BigFix Agents (aka the endpoints)

throughout your environment.

Figure 1: FillDB Processing

FillDB is so important as through this processing it will exercise the following elements.

• Database Management Server (DBMS) performance.

• IO performance, including the DBMS and the FillDB incoming Agent data buffer directory.

• CPU and memory capability of the relevant server components.

• Where applicable, virtualization hypervisor capability.

2

How to understand FillDB performance?

The first step to understanding FillDB is done by enabling the FillDB performance log (instructions are

here). Once you do that, you will have a large and fairly cryptic log. What can you do with this? We

provide a FillDB performance log analyzer (aka MXFillDBPerf). The log analyzer is available via the BigFix

Performance Toolkit (see here). The syntax follows.

usage: MXFillDBPerf [-h] --input FILE [--format {table,csv,json}] [--stats]

BigFix FillDB Performance Analyzer

optional arguments:
 -h, --help Show this help message and exit.

 --input FILE, -i FILE The FillDB performance log to be processed.
 --format {table,csv,json}, -f {table,csv,json} The format to use to display the results.

 --stats, -s Generate statistics for the results?

Figure 2: MXFillDBPerf Options

A sample invocation of the utility follows. The invocation includes generated statistics, that provide

information on the log sample and the utility processing time. It also includes information on the FillDB

report parsing and database insertion threads (the default value for each of these is “3”).

MXFillDBPerf -i myperformancelog.txt -s

FillDB Object Count Time (ms) Rate/s

--------------------------------- -------- ----------- --------
Fixlet results: 36204204 2177866 16624

action results: 247782 120095 2063
short property results: 3080911 296564 10389

long property results: 40935 94549 433

computer administrators: 39359 1732965 23

computer roles: 39359 124716 316
computer sequences: 138947 105576 1316

computer properties: 138947 545383 255

computer sites subscription: 245610 285136 861
Parallel DB Update (Short Batch): 146401 2445576 60

Parallel DB Update: 18576 168672 110
Batch Rate: 164977 2614248 63

Parallel Parsing: 164977 86602 1905

Statistic Value
--------------------------- -------------------------

Lines processed: 285361
Duration (s): 4.94

Throughput (lines/s): 57765.38

FillDB start time: 2017-05-09 09:53:40+02:00
FillDB end time: 2017-05-09 10:52:39+02:00

FillDB duration (hh:mm:ss): 0:58:59
FillDB parsing threads: 3

FillDB database threads: 3
Figure 3: MXFillDBPerf Sample Invocation

https://help.hcltechsw.com/bigfix/9.5/platform/Platform/Installation/c_logfiles.html
https://bigfix-mark.github.io/

3

How do I know if FillDB performance is good?

Okay, this sounds great and everything, but how do I know if these numbers are good? The most critical

numbers are the following.

• “Parallel DB Update (Short Batch)” and “Parallel DB Update”: The Agent reports are managed in

batches with an associated message processing rate. This is a good measure of IO, CPU, and

DBMS processing.

• “Batch Rate”: The aggregate of the above two updates.

• “Parallel Parsing”: The efficiency of the parallel parsing threads. This is a good measure of IO.

In addition to these summary counters, additional counters are provided for transaction rates for the

specific database target tables.

This is still a whole bunch of data. How do we know it is any good? To facilitate this, a hidden “health

check” option is provided. The option is hidden as it is merely a rule of thumb and there are reasons

why even poor values may be acceptable.

MXFillDBPerf -i myperformancelog.txt -s -c

FillDB Object Count Time (ms) Rate/s Health Check

--------------------------------- -------- ----------- -------- --------------

Fixlet results: 36204204 2177866 16624 665%: Great

action results: 247782 120095 2063 413%: Great

short property results: 3080911 296564 10389 2078%: Great
long property results: 40935 94549 433 043%: Poor

computer administrators: 39359 1732965 23 002%: Poor
computer roles: 39359 124716 316 032%: Poor

computer sequences: 138947 105576 1316 132%: Great
computer properties: 138947 545383 255 026%: Poor

computer sites subscription: 245610 285136 861 043%: Poor
Parallel DB Update (Short Batch): 146401 2445576 60 120%: Good

Parallel DB Update: 18576 168672 110 220%: Great
Batch Rate: 164977 2614248 63 126%: Good

Parallel Parsing: 164977 86602 1905 381%: Great

Statistic Value

--------------------------- -------------------------
Lines processed: 285361

Duration (s): 9.99
Throughput (lines/s): 28564.66

FillDB start time: 2017-05-09 09:53:40+02:00
FillDB end time: 2017-05-09 10:52:39+02:00

FillDB duration (hh:mm:ss): 0:58:59
FillDB parsing threads: 3

FillDB database threads: 3
Figure 4: MXFillDBPerf Sample Health Check

In this example, you can see the set of four core performance metrics are in very good shape. However,

there is a wide disparity for individual target tables. For instance, while we’re seeing great results for

Fixlets, actions, and short properties, several other data object types show poor results (e.g. long

4

property results, computer administrators, and roles). This can be the result of the sample size (larger

samples generally perform better), index maintenance issues, or resource contention.

How can I go faster?

In the event you would like FillDB to go faster, there are a few options available.

1. Ensure the base health of the system is in line with the BigFix capacity planning and

maintenance guides. In addition, periodic inspection of the FillDB Agent report buffer directory

is recommended to ensure it is not backing up. If desired, HCL services may be engaged to

perform a health check. If interested in a health check, feel free to contact the authors of this

paper.

2. Vertically and horizontally scale system resources, especially CPU and IO.

3. If system resources are available, increase the parsing and database insertion threads for FillDB.

Note this is highly dependent on system capability, and you will reach a point where increasing

threads will actually slow you down due to thread resource contention.

Further Reading

In the event further reading is desired on BigFix and FillDB performance, the following technical

resources are available.

BigFix Platform Documentation: URL

BigFix FillDB Performance Logging: URL

BigFix Configuration Settings: URL

BigFix Capacity Planning Guide, Maintenance Guide, and Performance Toolkit: URL

https://help.hcltechsw.com/bigfix/9.5/platform/welcome/BigFix_Platform_welcome.html
https://help.hcltechsw.com/bigfix/9.5/platform/Platform/Installation/c_logfiles.html
https://help.hcltechsw.com/bigfix/9.5/platform/Platform/Config/c_config_stngs_overview.html?hl=bigfix%2Cconfiguration%2Csettings
https://bigfix-mark.github.io/

